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Abstract- Kohonen's self-organizing feature map
belongs to a class of unsupervised artificial neural
network commonly referred to as topographic maps.
It serves two purposes, the quantization and dimen-
sionality reduction of data. A short description of
its history and its biological context is given. We
show that the inherent classification properties of
the feature map make it a suitable candidate for
solving the classification task in power system ar-
eas likeload forecasting, fault diagnosis and secu-
rity assessment.

1.B1OLOGICAJ> MOTIVATION

Topographicaly organized neural maps, like those which
inspired Kohonen to develop his self-organizing feature map
agorithm, have been observed in various parts of the central
nervous system,

Cells in primary sensory cortex (that part of cortex which
receives direct sensory input) can be characterized by their
receptive fields. A receptive field of a cell is that part of the
sensory world within which an adequate stimulus causes an
excitatory or inhibitory response of the cell in question. For
instance, cells in primary visua cortex are exciled selectively
by input to asmall part of the visual field of the animal, and
cells in the somato-sensory cortex respond preferentiall y to a
sensation felt on a particular part of the skin.

Cortical neurons arc not arranged randomly but rather in
functional areas. At a smaller scale, within the primary
sensory and motor areas, cells are organized in ordered spatial
maps which preserve the topography of the input space to
some extent ("topographic maps’ ). For example neuronsin a
particular arca of the somato-sensory cortex will correspond
to the sensory input of neighboring fingers of the same had.

Starling aready in the early seventies [von der Malsburg,
1973; Willshaw and von der Malsburg, 1976], there have
been numerovs attempts to understand the structure and the
formation of such cortical maps by formal modeling While
their model requires the postulated existence of so-called
marker substances which guide the topographically ordered
projection, more recent developmental models are based on
cm-related electrical activity of input to the cortex. Linsker
{1988] proposed a Inrrlti-layered network consisting of linear
units in order to model orientation selective cells. His work
was subsequently revised by Miller et al., [1989] for ocular
dominance columns and orientation columns [Miller, 1994]

and explained in terms of principal component analysis.
Niebur and Worgétter, [1994], however, have shown that
such maps can also be described in terms of very simple
geometrical constraints.

As discussed in [Ritter, 1988] for somatosensory maps and
[Obermayer, 1993] for ocular dominance and orientation
columns, the self-organizing feature map introduced in
[Kohonen, 1982] provides an elegant and comparatively
simple qualitative model which explains all these features
with one mechanism.

2. A COMP[JTATIONAL MODEL FOR TOPOGRAPHIC
MAPS

Kohonen [1982] proposed aformal model for the formation
and function of topographic maps which he called “topology
preserving map” and which is now known as Kohonen's self-
organizing feature map. For aset of input signas, the map is
designed to achieve the following tasks [Kohonen, 1989]:

1) Vector guantization of the input set,

2) Dimensionalit y reduction of the input space,

3) Preservation of the topological order present in the
similarity relations of the input vectors

In the following sections its laterally connected architecture,
winner-take-all processing, and unsupervised learning
algorithm and the resulting properties are discussed.

2.1. Architecture - lateral feedback through neighborhood
relations

The self-organizing feature map is an array of m processing
elements (neurons) arranged on a lattice of arbitrary
dimension. Most applications use a two-dimensiona lattice
but models where neurons are arranged on a (one-dimensional)
line or in higher-dimensional spaces can be defined. For a
given network, the input vectors x have a fixed dimension n.
The n components of the input vectors are connected to each
neuron in the lattice. A synaptic weight wij is defined for a
connection from tbe jth component of the input vector to the
ith neuron. Therefore, an n-dimensional vector w; of synaptic
weights is associated with each neuron i.

A neighborhood relationship is specified between the neurons
of the Kohonen network. in the biological cortex, the
connectivity of neurons decreases with their relative distance




In the computational model, this is behavior reproduced by
introducing interactions between neurons whose strength
decreases with their distance.

Fig. 1 shows a 4x4 Kohonen network which maps 3-dimen-
sional input vectors to a two-dimensional map containing 16
neurons. Only neurons linked by a black line are connected,
and only the weights belonging to neurons O and 8 are
represented in this figure,
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Figure 1. Neural network architecture of the self-organizing feature map.
Assuming the most stimulated neuron is neuron 5, dark and lightly shaded
neurons identify its first and second-order neighbors

For the genera] case of m neurons arranged on a two-
dimensional lattice of length m ; and width m,, the
connectivity is defined by the following neighborhood
relation: With each neuron ¥ (¢ =0, . .. .m-1) is associated
its two-dimensional coordinate r(k) := (ki kj),
i=0,....mJ-1,] =0, ....row-l. The distance between
neurons 4 and neuron 1 is then defined as a function of the
indices i and | of k and /,

dist(k, 1) = tir(k) - r(HIl = Nloor(ll(ky, kj) - (li,lj)ll), 0)

where floor(h) denotes the largest integer less or equal 10 A.
With the Euclidean distance 11 11 defined in (2)

ke )= oty i, 12 4 (1, @

every neuron in Fig. 1 has at most 8 neighbors of order one
for a distance < 2.

The neighborhood relationship canbe chosen in an arbitrary
way, and common ways to connect Neurons are the
association of four, six or eight neighbors for each neuron. In
order to keep the subsequent figures simple, wc often omit
the diagonal connections and the circles denoting the neurons.

lo principle, the number of neurons is independent of the
dimension of the input vector and of the size of the training
set. However, asmall number of neurons can form only a
small number of clusters, each one representing a large set of
input vectors, which leads to a coarse discrimination of
features in the input vectors. Depending on the application,
such a coarse discrimination may not present a sufficiently
detailed classification for alarge training set and a larger
number of neurons may be required.

In biological systems, the lateral connections between
neurons implement excitatory and inhibitory links. In his
origina approach, Kohonen [1982] proposed a fully laterally
connected network with distance-related strengths of synapses.
Neurons close to each other on the grid have a positive
(excitatory) coupling, whereas more distant neurons are
coupled by negati ve (inhibitory) connections.

Plotting the functional influence between neurons as a
function of the distance between them therefore yields the
familiar Mexican Hat Function, an example of which is
being shown in Fig. 2
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Figure 2: The Mexican Hat Function: amodel for lateral excitation and
inhibition of neurons on a one-dimensional net,

Kohonen [1982, 1989] showed that a network with this
neighborhood function classifies input states without the need
for an error signal (which is required with supervised learning
techniques) and called it therefore the “ Self-Organizing
Feature Map.” He also showed that the self-organization can
be obtained without using the full neighborhood function
shown in Fig. 2 but that a simpler, computationally more
efficient neighborhood function is sufficient. It is, in fact,
possible to omit the inhibitory connections, choosing a
neighborhood function A(i, i*, 1) of exponential or Gaussian
form, asin

- ra%)f

A, i, 1) = cxp[ 20(1)°

J, k=1lor2 €)]

where o()=1-#,0 << 1 and t defines the (usualy)
discrete iteration time. The coordinates of neuron ion the
two-dimensional grid are denoted as r(i), i* is the maximally
excited neuron and i are the neighboring neurons. This
function is shown schematically in Fig. 3.

Neurons which are connected to each ofher by strong excita-
tory connections form a functionally related neighborhood
whose size is given by the parameter o(r) in (3). This param-
eter is conventionally called the “neighborhood size” of the
neighborhood relation defined in (3). It is chosen as adecreas-
ing function of iteration time.
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Figure 3: The Gaussian Function: amodel for latera excitation of neurons
on a one-dimensional net.

3.2.  Thesdf-organization algorithm
2,2.1. Processing - classification through competition

When Kohonen introduced the network that bears his name,
the algorithm he used for the processing of the input signal
was similar to that of the logic threshold unit (see tutorial
chapter on ANN concepts) and other biologically inspired
artificial neural networks:

n
vi=g(v) and vi= Yw;x;=(w,x) @
=

In (4), nisthe dimension of the input vectors and the gain
function £() is the winner-take-all function, i. e.

fori=i* .
Yi=g(w) ={(:)I' e(l);elwh:ere’ i=1,....m (5)
antt neuron i* is selected such that its weight vector wi= is
the most similar to theinput vector. Similarity is defined by
the angle between input and weight and measured by the
scalar product. Thus

vix =ma X{< w; X>li=1, .., /)1 (6)

where m is the number of neurons. Assuming for the
moment @ many output classes as neurons, neuron i*
respectively output yi* is called the winner of the

competition.

Unsing the parallelogram equation it can be shown that for

normalized inputs and weights, <w;, x> takes its
maximum for weight vector w i* if llw;- xIi takes its

minimum for w;=w;*. As before, Il Il denotes the
Euclidean distance. For normalized weight vectors (6) above
and (7) below select the same winner, neuron i*. We can
therefore select neuron i* such that

vis =min{llw;-xllli=1....m) @)

The two concepts of similarity for the selection of a winner
are therefore eq u i valent for normalized vectors. However, the
normalization is onl y needed in order to model the same type

of neuron as the logic threshold unit. The theory of Kohonen
networks does not require the normalization of input and
weight vectors.

2.2.2. Training - prototype generation through unsupervised
learning

As was mentioned previously, there is no need to specify the
desired output in advance, when using the Kohonen algorithm
and the training is therefore called unsupervised or self-
organized. The adgorithm is shown in schematic form in Fig.
4. Let m be the number of neurons with weight vectors
wreRM 1<k<manti X ={x eR"Ix training
vector) the training set. At each step 1 of the learning phase,
a vector x, drawn randomly from the training set X, is
presented as input to the network.

The neuron i* whose weight vector is closest (0 the input
vector X in the sense of the Euclidean distance, is selected.
The weight vector wi* of this neuron is then adapted,
becoming closer to the input vector according to the
adaptation rule given in (8) below. The weight vectors of the
neighboring neurons are aso changed, by an amount which
decreases with increasing distance to the winning weight
vector. More precisely, at time t+1, the component j of
weight vector wi is modified by adding

A wijj wij (1+1) - wij ()

= N AU ¥ X - wij (1) ®

The neighborhood function A of the adaptation rule, defined
in 3, and the learning rate 1 have to be chosen such that the
weight vectors converge to an equilibrium after a sufficientl y
large number of input vectors from the training set X have
be_ser? presented. This requires that the learning rate (/) decays
with time.

Theoretical results concerning convergence and stability of
the algorithm by Ritter and Schulten, [1988], suggest the
following choice for n(r)

N =t~% with 0<a =<1 9

and A(i, i*,1) as defined in (3), see [Erwin et al., 19923, b]. A
summary of the algorithm is listed in the following Fig. 4.

Since input vector x is drawn randomly from the training set
containing a finite number of vectors (see step 2 in Fig. 4),
any input vector may be chosen several times,

The c—criterion (step 6 in Fig. 4) isvery time consuming
for large networks and high-dimensional input spaces.
Usually this criterion is therefore not applied and the
simulation isinstead halted after a pre-determined, large
number of iterations. Furthermore, since A(i, i*,7) decays
exponentialy with the distance between neurons, the change
of the weights of neurons far away from the winner is
negligible, Therefore A(i, i*,1) is truncated, and only neurons




whose distance to the winner is smaller than the truncation
threshold are updated in step 4.

After training, input vectors which are close (in the sense of
the Euclidean distance) in the input space will stimulate
neurons which are close to each other on the lattice. Some
neurons may not be stimulated by any input vector.
Grouping together all neurons stimulated by the same group
of input vectors leads to the concept of neuron clusters
representing classes of input vectors. Obvioudly, the number
of such clusters can be smaller than m,

1) t :=0: initialize wij randomly fori=1,..., m,
j=1,...m,

2) Choose input vector x € X randomly in the training set

3) Determine the neuron i* such that its weight vector w;
is the closest to the input vector

llw (1) - xl} = min llw;(t) - x| foralli
1) Update the weight vectors w;, i =1, ..., m:
wi(t+1) :=wi() + n@) AG, i*, 1) (x - wi(®)

5) Increment the time 1 := +1

n 2
5) if for several ime intervals E_IAW.','| > E then

i=]

20 10 2 else STOP

Figure 4. Training algorithm of the self-organizing feature map.
3.3.3. Self-organization as Hebbian |earning

Kohonen's learning rule (8) obeys Hebb's postulated
generalized learning principle. For convenience let us repeat
this principle introduced in the previous tutorial chapter:

For the weight vector w of an artificial neuron, given input
vector X and output y, synaptic learning can be expressed as
the changes in the synaptic strength. These changes depend
on the learning factor correlating output and input and the
Sorgetting factor correlating output and weight:

Aw=nyx-ayw=oy ((g/a)x -w) (lo)
with n,a> 0

With the choice of equal learning and forgetting rates a = 1y,
and awinner-take-atl unit with neighborhood zero, the neuron
output y will bc either zero or one, and Hebb's rule is
satisfied. The neighborhood function however can be
interpreted as white noise, which corrupts the output signal
with normally distributed probability.

3.3.4. Self-organization by lateral feedback

We now discuss briefly aternatives to the update rule, step 3
in Fig, 4. The Kohonen algorithm reguires that the distance
between the input vector and all the weight vectors is
determined at every iteration step. While this leads to a very
efficient classification algorithm (see below), the
implementation of this comparison in the biological brain, i.
e. biological “hardware”, may not be simple. The problematic
step is the comparison of the outputs of all units for the
selection of the maximum, This is a non-local process which
requires information of the state of all units, to be monitored
by a“master” unit.

Therefore, aternative updating schemes have been developed
which do not require the explicit selection of a“winner”
(vector with smallest distance to the input vector). In such
schemes, the most responsive neuron is determined by a
dynamical process leading to the formation of “activity
bubbles’ which converge into stable focused patches of
activated neurons [Kohonen, 1989; Lehmann, 1993; Sirosh
and Miikulainen, in press] An electronic implementation of
this algorithm in analog VLSI technology has been developed
by Vittoz et al, [1989].

3. CLASSIFICATION EXAMPLES OF RANDOMLY
DISTRIBUTED INPUT VECTORS

The following section shows an illustration of the
classification features of the Kohonen network. In the specia
cases Where the input vector has the dimension 2 or 3, it is
easy to represent this classification graphically, see also
[Kohonen, 1989].

The feature map illustrated in Figs. 5, 6, and 7 consists of
10x 10 neurons. Each neuron is placed at the coordinates
defined by the first and second component of its two-
dimensionat weight vector. Weassume that the input vectors
arc uniformly distributed on the unit square,

Fig. 5 shows the initialization of the weight vectors which
are randomly distributed in the input square but which do not
exhibit any organizationa structure. Neighboring neurons are
randomly located on the square. Fig. 6 shows the state of the
network after 200 input vectors randomly drawn from the unit
square with uniform probability have been presented to the
net work.

The map in Fig. 6 is already somewhat organized:
neighboring neurons on the grid are usually located close to
each other in the input space. But the organization is not
perfect. The learning parameters are such that the
neighborhood order is still 2. If in the next step, the input
vector X is situated at the coordinates marked by the black
circle, the winning neuron marked by the shaded circuit and
al its neighbors of order one marked by the white circle and
two (not marked in this figure 5) are updated simultaneously.
Their coordinates will change in direction to the x.
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Fig. 5 Initial state of & 10X1O Kohonen network
representing uniforml y distributed t wo-
dimensional input vectors. In the initial stale,
weight vector components are. randomly
distributed and the networks is unorganized.

Fig. 8 Organization after 1000 integrations of a

10xI O Kohonen network representing Gaussian-

distributed two-din e psional input vectors of
means (O, 1). The weight vectors are densely
distributed at the means. Their distribution
reflects the Gaussian distribution of the input
vectors shown as shaded marks
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Fig. 6 organization of the Kohonen network Fig. 7 Organization of the Kohonen network
after 200 training steps. The black dot denotes after 1000 training steps. The weight vectors are
position of input at step 201. The shaded neuron equally distributed in the input space. Their

will be the winner of the selection, the while distribution reflects the uniform distribution of the

circle denote direct neighbors . input vectors shown as shaded marks

Fig. 9 Tessellation of te input space by the ~ Fig. 10 Organization Of @4x30 Kohonen NEtwork
Kohonen NEfWOrK. Not e, that densely populated ~ with ab yperbol i call y decreasing neighborhood,
areas are represented by a larger number of representing’ uniforil y distributed two-
neurons with a smaller class size. dimensional input vectors. after 1000 training
steps. White circles highlight areas where the
map is distorted. Shaded circles denote neurons
which violate the topological ordering principle.
The ellipse shows one region of the input space
where the network presents a distorted mapping
of the input space.

Fig. 5- 10 were generated using an implementation Of tfre Kohonen NEtwork devel oper at the Laboratoire 0€ Microélectronique Of the Ecole

Polytechnique Fédérale de Lausanne [Demartines, 1991].

and learning rate, Fig. 7 shows the evolution after 1000

The change is proportional to their Euclidean distanceto x,  training steps when the network has converged to a stationary
to the degree of their neighborhood to the winner and the  state. The neighborhood order has been already decreased to

learning rate.

zero, and in the last 300 steps only the winner was updated.
The neurons are by now well organized and almost uniformly

A more regular pattern is obtained for larger numbers of  distributed in the input space, thus representing the same
training steps and a further decreasing neighborhood function  distribution as the input vectors. Two input vectors close to




each other in the input space will be classified by either the
same neuron or by two neighboring neurons.

Fig. 8 represents the organization of the map for Gaussian
distributed input vectors and Fig. 9 represents an
approximation of the Voronoi tessellation obtained with the
Kohonen map. Note that neighboring areas are represented by
neighboring neurons.

An interesting example is shown in Fig, 10. Instead of a
quadratic grid, neurons are placed on arectangular grid. The
size of the neighborhood function A further decreases with
1/, instead of exponential] y. We can observe two phenomena.

First, the network assumes the form of a Peano curve. Its
weight vectors still represent a quantization according to the
distribution of the input vectors. Second, the topological
representation of the input space is distorted in areas denoted
by white circles. For example the dark shaded and the light
shaded neuron arc direct neighbors on the grid. However
neighboring input vectors drawn from the dotted region will
most likely be classified by either the dark shaded neuron or a
fourth order neighbor shown by a striped circle instead of its
direct neighbor,

For the one-dimensional case, Erwin er al., [1991] have
shown that for a Gaussian neighborhood function these
topologica defects can not occur.

Anexample with a higher-dimensional input space is shown
inFig. 11.

Figure 11: 4x4 Kohonen network representing uniformly distributed three-
dimensional input vectors,

A two-dimensiona 4x4 Kohonen network was trained with a
total of 500 three-dimensional input vectors uniformly
distributed over the volume of a three-dimensiona unit cube.

The three-dimensional weight vectors should be distributed
regularly in the cube. Due to the small size of the network,
however, the comer neurons classify the extreme cases of
vectors drawn from near the edges of the cube, although these
input vectors may not be close in the sense of the Euclidean
distance. This isillustrated at the example of two neurons
(marked by ablack and awhite circle, respectively), The

input vectors classified by these neurons are shown as black
dots and it can be seen that they form two clouds adjacent to
the two comers next to the corresponding neuron.

4. STATISTICAL PROPERTIES OF THE SELF-
ORGANIZING FEATURE MAP

At agiven time t, the state of the feature map consisting of
m neurons is defined by the weight vectorsw 1, w2, . ... wiy

e R". Note that most of the results listed below are proven
only forn=1,

Let us assume that the input vectors x € R#* are distributed
in the input space according to a given probability
distribution P(x), In the adaptation rule defined by (8), the
value of weight vector w(z+ 1) at time t+ 1 depends on the
weight vector w(1) at time ¢ and on the input vector x

presented at time 7+ 1. Since x is drawn randomly from the
distribution P(x), the state W of the feature map evolves
stochastically in time, Since the probability of the state at
time 1 +1 depends only on the state at time t, the state is a
Markov process. For discrete time steps, the sequence W(r) of
feature map states forms a Markov chain.

Two questions have to be studied in the context of feature
maps, first the convergence of the algorithm towards a stable
state, second the properties of the map with respect to the
preservation of the topology of the input space.

The first question, namely under which conditions for a
probability distribution P(x), a learning rate n(r) and a
neighborhood function A(i, i*,r) the Markov chain will
converge to a stable equilibrium point, was addressed by
severa researchers.

In the case of a one-dimensionat real input space, Cottrell and

Fort (1986) showed that the Markov chain converges almost
surely to a unique stable equilibrium state if

x isuniformly distributed in K7

and
A, i, t)::{& deelindt <2 (11)

and the learning rate fulfills the so-called "Robbins-Monroe"
conditions:

iﬂ(1)=+°° and in(l)2 < oo (12)
=0 t=0

The conditions for convergence for general continuous
distributions were weakened by Ritter [1988] who showed
that the following condition on the learning rate is sufficient



o0

fawydt = + e and
0

n(H—-0 for t—e0 (13)

Note that the learning rate n (r) defined in (9) fulfills these
conditions. For the one-dimensional case Ritter [1991]
showed further that the probability distribution of the weight

vectors equals P(x) %3 "1™ \here y(m) goes to zero for
large nets, that is, for m—es, '

Introducing a modification of the adaptation step, Yang and
Dillon [1992] proved the convergence of the modified
agorithm for the two-dimensional case.

For higher-dimensional input spaces and continuous
probability distributions, Erwin et al. [1992a, b] proved the
following negative result: There is no energy function whose
minima corresponds to the stationary states of the system,
because in this case the forces acting on the weights are not
conservative. ‘his means that in contrast to Hopfield nets,
the stationary state cannot be found through optimization of a
cost function. Energy functions can only be defined locally
for each individua neuron [Tolat, 1990].

in the case of n-dimensional discrete probability distributions,
however, Ritter [1988] demonstrated the existence of a non-
differentiable energy function bounded from below. This
function may have severd local minima. As in the case of
simulated annealing techniques, the slow stochastic updating
of the weight vectors, i. e. the slow decrease of the learning
rate, facilitates the escape from these local minima. Ruzicka
[1993] gives conditions on the learning rate and the
neighborhood function for which the feature map converges
to a stationary point. This is an important result for technical
applications where the training set is often finite and its
probability distribution is therefore always discrete. As a
consequence, the convergence of the algorithm is guaranteed.

The second question to be discussed is the preservation of
topologically ordered stales. In the one-dimensional case, if
we number three neurons i, j, and k according to their
position onthe “lattice,” the triple of corresponding weights
Wi,»wj and wy is called topological y ordered if

wi-wjl<lwi-wgifor 1i -jl<li-kl 04)

for i, j,k=1,..,m.

Cottrell and Fort [1986] showed that the topologically ordered
state of the chain is absorbing. In other words, once the triple
of weights is ordered, this topological order of w; and w;j will
not be destroyed. This result was extended by [Erwin et dl.,
19924, b] for one-dimensional monotonically decreasing
convex neighborhood functions as, e. g., the Gaussian
function and the choice of & = 2in (3). They showed that for
such neighborhood functions, the topologically ordered states
are the only stationary states of the system and that
furthermore, there may exist meta-stable states for non-

convex neighborhood functions. These meta-stable states do
not respect the topological order of the map. An example for
this type of behavior was illustrated in Fig. 10.

There is no straightforward definition of distortion in higher
dimensions which would correspond to (14) in the one-
dimensional case. A heuristic distortion measure was
introduced by Bauer and Pawelzik [19921 who then showed
experimentally that the distortion error can be reduced by
increasing the dimension of the neuron lattice. However, one
of the mgjor advantages of the self-organizing feature map
technique over conventional quantization algorithms in the
context of power system security analysis is the possibility
of direct visualization of the system state on a graphical
display, see aso 8.1.2. Since this is not possible for maps of
dimension higher than two, the method proposed by Bauer
and Pawelzik cannot make usc of this desirable property of
the Kohonen network.

Kohonen [1989], Ritter and Schulten [1988] and Obermayer
[1993] observed that the coordinates of the two-dimensional
lattice of the self-organizing map are organized according to
those variables of the input space for which the variances are
maximal, This is a very important feature for our application
of the feature maps to static line overload assessment and
prediction. When choosing the line loads as input vector
components, the feature map organizes itself according to line
loads varying between outage and overload.

A summary of the discussed results as well as further
references to theoretical work is given in [Cottrell et al.,
1994],

5. APPLICATION OF SELF-ORGANIZING FEATURE
MAPS IN POWER SYSTEMS

In technical areas Kohonen networks have successfully been
applied to solve the inverse kinematic problem in robotics
[Ritter et al, 1991]. Another promising application of self-
organizing feature maps is the representation in two
dimensions of high-dimensional input vectors for the design
of integrated circuits [Tryba, 1992]. An application for the
optimization of NP-complete combinatorial problems like
Ehe T]raveling Salesperson Problem was discussed by Fort
1988].

Applications for electric power systems include static security
assessment [Niebur and Germond, 1991, 1992; El-Sharkawai
and Atuteri, 1993], steady state stability [Mori, 1991b), fault
diagnosis [Lubkemaner al., 19911, transformer fault
diagnosis [Baumann €t a,, 1991], and load forecasting, [Hsu
and Yang, 1991; Germond et al., 1992].

51.  Transformer fault diagnosis

Transformer fault diagnosis is a pattern recognition and
classification task, which has successfully been solved with
the self-organizing feature map. Obtained by impul se tests,
the ransformers' transadmittance (transfer function) is a good




indicator for the fault status of the transformer. The sampled
magnitudes of the transadmittances of transformer faults are
presented as input vectors to the Kohonen net, The phase of
the transadmittance was often corrupted by noise and was
therefore discarded.. An example for a discretized transfer
function is shown in Fig. 12. {Baumann, T. et al. [1991]
work with simulated training and test data.

Fig. 12 Discretization of a transfer function into an input vector of
dimension 6.

Fig.13 illustrates how the neurons of an 8x8 map respond to
different shapes of transfer functions. Note for instance, how
the weight vectors of neurons in the second row correspond
dlightly varying input features where the transfer function,
has a pronounced maximum in class 16. The shape of the
function will gradually flatten and become monotonously
decreasing for class 21. Notice also, how the direct neighbors
of neuron 36 all show a function whose maximum is
obtained at the first discretization. Different types of
ransformer fauns arc classified by different neurons on the

map.
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Fig.13 Organization of a 8x8 Kohonen map for transformer fault
diagnasis, (adapied from [Baumann, Tschudi and Germond,. 1991]; figure
provided try courtesy of the authors)

5.2.  Load forecasting

The task of load forecasting consists of two steps, firstly the
analysis of theload data with respect quality of data and with
respect to different consumer behavior depending on seasons,
weekdays and holidays; secondly the estimation of the load to
be forecasted based on previously experienced load demands.
The self-organizing feature map has successfully solved the
data analysis task by creating classes of load patterns which
are averages of several similar load patterns. Choosing the 24

hourly loads, next days peak load and 4 different day types as
inputs to the neural net, [Gennond et al., 1991] show how a
10x 10 Kohonen network maps similar load data onto
neighboring classes on the map shown in Fig. 14.

Sunday

Monday I Saturday

#eds] DO Summer neuron
Tuesday to “: Spring and Fall neuron
Friday W Winter neuron

2.
st

{0 Interneuron

Fig.13 Organization of a OxIO Kohonen map for load forecast-
ing, (adapted from [Germond et rd.. 1992)]; figure provided by
courtesy of the authors).

Notice that the pre-dominant organization of the map is due
to different day types which are mapped to different clusters.
Seasonal changes affect the organization inside the clusters
only.

S.3. Power System Security Assessment

The Kohonen network for power system security analysis has
been studied by Niebur and Germond, [1991, 1992]. The
quantization feature of the Kohonen map is illustrated in Fig.
14. The cube shown in this figure corresponds to the safe part
of the linear operating space of a3-bus 3 line power system
introduced in the previous chapter, [Niebur, 1996]. The axes
of the cube are labeled by the line powers, Pab pgc, Pbe- The
surfaces of the cube are defined by the three active transfer
limits of the three lines.

The self-organizing feature map quantizes the operating space
into safe, critical and unsafe regions, as shown in Fig. 14. In
general the security classes are not given by cubes but by a
more general three-dimensional tessellation, The weight
vectors of the neurons represent typical operating states
which can be analyzed off-line either statistically or with
conventional power system analysis tools. In the ideal case,
secure and critical states are classified by the neurons in the
center of the grid, and unsecure states will be classified by the
neurons at the border of the grid. The inner neurons will give
quite precise quantitative information on the vulnerability of
the system state with respect to security limit violations. The
neurons at the border will give less precise information about
the insecure operating states lying far away from the secure
region. However, for these inadmissible operating points,
remedia action should always been taken.

The second important feature of the Kohonen map is the
preservation of the topology of the input space. In other
words, input vectors close in the input space should be
classified by neurons close to each other on the grid.
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Fig. 15 Quantization of the operating space with the self-organizing feature
map. The shaded cubes represent classes of operating points represented
by the weight vectors of the neural net.

Since the mapping is from a high-dimensional spaceto a
two-dimensional lattice, only an approximation of this
topology preservation can be achieved, except for the case in
which the input vectors lie on a two-dimensional manifold of
the n-dimensiona input space. Assuming the preservation is
sufficiently good, the features of the classes represented by
the neuron can then be displayed in two dimensions, as is
demonstrated in Fig. 16.

Secure, power similar size for
dl lines

0]
O Secure, power bc small

O Secure, power ac small

@ Critical for lineab, power be small
8 Critical for line ab

Insecure, limit exceeded for line ab

O Insecure. other cases
Fig.16: Feature map of security regions presented in Fig. 15.

An efficient implementation of Kohonen networks on
specialized hardware for power systems static security is
discussed by Comuetal., [1991].

6. CONCLLJSION

In summary, the Kohonen network classifies the input
vectors with respect to the distance between input vector and
the weight vectors of the neural net. Each weight vector
therefore represents a certain number of input vectors and
organizes the input space based on the probability
distribution of the input data. The training algorithm
guantifies the input pattern space consisting of the input
vectors into at most m classes and computes the weight
vector-s as representative elements of these classes. The
neurons on the 2-dimensional map are organized according to
those components of the input vectors having the largest
variance. The map therefore provides a feature selection in
addition m the data guantization.

The following properties of the self-organizing feature map
areof major importance for technical application:

. Quantization of the input space.

. Robustness towards bad or missing data.

. Dirnensionality reduction of the operating vector.

. Topology preservation of the input space structure.

In addition to the presented applications to power systems,
feature maps have a great potentia in the area of monitoring.
The two-dimensional topological representation of the
operating space provides a global qualitative picture of the
instantaneous situation to be monitored. This feature is not
currently available in power system control centers. The
stochastically evolving operating point can be monitored on a
computer screen, and the direction of the trgjectory of the
operating point indicates whether the power system or power
plant state moves out of the secure area and which constraints
are most likely going to be violated.
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So far wc have replaced the inversion of the pseudo-inverse
by an iterative procedure. This procedure still needs the
knowledge over the whole training set.

However instead of minimizing the error globally we can
now try to minimize the error locally by random] y taking one

training example (xM, y:argel) aalime

wt+1) = w()+ O (W) — Yigger ) 5*

= w(t)+ ()" x*

(15

This stochastic updating or learning rule is commonly
referred o asthe LMSrule, the Widrow-Hoff rule, or the
delta rule. Itis one of the earliest adaptive “neural units,
caled adapt ive lines r unit or ADALINE and was used for
adaptive control, [Widrow and Hoff, 1960].

The iterative process converges stochastically to the
minimum of the error function, if the so-called "Robbins-
Monro" conditions hold for the learning rate n, [Duds and
Hart, 1972]

in(x)= + o0 ad Tn@)? <o (16)
+=0 1=0

Although only applicable to linearly separable learning tasks,
see remarks 7.2.3, the delta rule fulfills several of the
biological paradigms. It is computationally simple, robust
with respect to noisy input data as well as numerical
rounding errors and it is a local adaptation scheme learning
one example at atime.

It further obeys a generalization of Hebb's learning principle
(8). For a fixed input and target output, the weight changes
depend on two terms only, the correlation of input X and
calculated output y , and a constant stimulus, the product of
input and target output,

There are other supervised learning rules based on Hebb's
principle like the perceptron rule and the generalized delta
rule, introduced in the next tutorial chapter. Other types of
neural networks trained with a different type of supervised
learning like the Functional-1.ink Net are discussed in [Pao,
1989].
7,2.4. Unsupervised learning - learning for data
reduction

Inunsupervised learning the input vectors of the training set
are given, but the corresponding target outputs are not

specified. Unsupervised neural nets fall into the same class of
tools as statistical non-parametric data analysis, clustering
algorithms and encoding or decoding techniques,

Their main goal consists in data reduction. The reduction of
the data set of input vectors can be achieved in two different
ways: either by reducing the dimensionality of the input
vector, or by reducing the number of input vectors.

The simplest neural network for unsupervised learning
consists of a layer of feed-forward winner-take-all units. For
each input vector only one such unit will respond, namely
the unit characterized by the maximum output, respectively
minimum distance, for this input vector X. The units of the
network are thus competing for selection. Only the weights
of the winner will be adapted. All input vectors responding to
the same unit are said to forma class and the weight vector of
this unit is called the class “prototype.” Here, the gain
function is defined to yield one for the maximum respectively
minimum output, and zero otherwise,

“Winner-kWe-all” units are related to “grandmother cells’
because they are responsible for selecting one specific feature,
e. g. the feature presenting the stereotypical grandmother.
Note that this representation is not robust because when one
unit is removed (or one cell diesin abiologica brain), all
information concerning the corresponding class would be
lost.

A solution to this dilemmais proposed by Kohonen's self
organizing feature map where (ideally) neighboring neurons
classify neighboring features and thus the 1oss in one neuron

will result in a decrease of accuracy but not in a complete

loss of information.

Let us briefly introduce the main concepts used in some types
of unsupervised networks. For more detailed information see
{Krogh et al.,, 1991; Haykin, 1995]. Figs. 10, 11 and 12
show schematically how the data reduction of randomly
distributed data is achieved using 3 different types of
unsupervised networks.

The first unsupervised approach for the reduction of the
dimension of the input vector falls in the class of subspace
techniques where the input vector is projected on a linear
subspace presenting the most salient features. Statistical
principal component analysis chooses the subspace spanned
by the eigenvectors of the correlation matrix of the input
vector. The standard deviation of the input vectors take their
maximal and minimal values along the eigenvectors
corresponding to maximal and minimal eigenvalues. A
simple example is shown in Fig. 10 where the data variation
along the horizontal axes is more prominent than the one
along the vertical axes.

A non-competitive unsupervised network for principal
component analysis based on Hebb's learning rule was
proposed by Oja[1989] and generaized by Sanger, [1989];




for d]etaj Is and references to this work see also [Haykin et al.,
1995].

Fig. 10 Data projection onto a one-dimensional hyperplane. Each data point
will be represented by its lower-dimensional projection onto the straight
line. The shaded circle denotes a new input vector for which tbe projection
exists, although the classification error will be large.

The second unsupervised approach for the reduction of the
number Of input vectors is based on clustering techniques. In
order to reduce this number, the neural net categorizes the
training vectors into classes or clusters based on the concept
of similarity introduce in section 6. For the examples we will
use the Euclidean distance bet ween two vectors as a measure
of similarity.

In classical clustering techniques, such as the 1SOdata
algorithm, [Duds and Hart, 1973], clusters are formed by
computing the distance between an input vector and already
existing clusters. If the distance between the input vector anti
the reference vector of an existing cluster is smaller than a
previously defined threshold, the new input vector is grouped
with this cluster; otherwise, a new cluster is formed.
Functional y, a spherical neighborhood is formed around the
reference vector of each ncw cl uster. Note that the diameter of
the sphere is predetermined, whereas the number of clustersis
not. An example of thistype of clustering is presented in
Fig. 11. A similar objective is achieved by the Adaptive
Resonance Theory (ART) networks [Carpenter and Grossberg,

NEe
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Fig. 11 Clustering of data into a variable number of classes of fixed
diameter. The center’ of the circles, not presented in this figure. present the
class prototypes. The shaded circle denotes a new input vector which does

not fOIl into any of the trained classes.

In vector quantization techniques based on the LBG agorithm
[Linde er al., 1980] or the k-means clustering, like the
Kohonen network, [Kohonen, 1989] , the maximal number
of clusters is determined by the number of neuronsin the
map. The weight vectors arc the reference vectors or
prototypes of the class. On the other hand, the distance
around the reference vector of a cluster is not predetermined
and the region is, in general, not spherical. Instead, the
clusters are large in the regions where the density of

probability of the input vectorsis small, and vice-versa, as
shown in Fig. 12.

Fig. 12 Tessellation of data into a fixed number of classes of variable
diameter. The striped circles, represent the class prototype. The shaded
circle denotes a new input vector which does falls into one of the trained

classes although the classification error will be large.

In the case of simple vector quantization, that is for a
Kohonen network with winner-take-all units and no neighbor
stimulation, the network minimizes the a average distortion
error between the input vectors and their reference vector, The
regionsitself correspond (o the Voronoi tessellation, and
boundaries of the regions around a cluster are hyperplanes..
More details will be presented in the chapter on Kohonen
networks. Important results and references can be found in
[Ritter er al., 1992].

7.3 Purpose of training in power systems

Let usillustrate the concepts of supervised and unsupervised
learning for a very simple power system shown in Fig. 13,
consisting of two generation busses a, b, one load bus, ¢,
and three lines ab, ac, bc, whose active power flows Pab, Pacs
and ppc are limited by the maxima active line powers, i. e.

Pab max. Pac max and Pbc max-

Generation p, Generation py,
Pab
Busa Busb
Pac Puc
Bus C
Load p.

Fig.13 A 3-bus-3-line linear power system model.

The operating vector can be chosen to consist of the active
line powers (pap, pat, Pbe) In this case the secure operating
space is defined by a paralielepiped whose boundaries are
determined by Pab max> Pac max and Pbc maxs see Fig.14.

For simplicity we will throughout this work refer to this

parallelepiped as the security “cube’. Operating points inside

the shaded cube are secure, points inside but at the border are
critical and operating point outside the shaded cube are
unsecure because they violate at least one constraint on the
maximum admissible line powers,

This example is based on several simplifications. Only active
powers have been considered, In the general case the cube has




1o be replaced by a non-linear manifold. Furthermore, not all
vectors of the three-dimensional power system operating
space shown in Fig. 14 represent feasible operating states,
since Voltage-VAr constraints and Kirchhoff's |aws apply for
each bus and each line. Nevertheless, the example illustrates
conveniently the differences between supervised and
unsupervised learning.

re |
Pbc max e Unsecurd
Secure 1 L Critical
7;
/ Pab
Pac -
- Pac max Pab max

Fig. 14 The operating space of the 3-bus-3-line. linear power system model,

Supervised training approximates the boundaries of the
operating space for the training set and interpolates in
between known data points, It basically constructs separating
hyperplanes (manifolds in the non-] inear case) corresponding
to the surfaces of the shaded secure cube in Fig. 14. An
example for this technique as well as several enhancements
are discussed in [El-Sharkawi ef al., 1991].

However, because in the general case the dimension of the
operating space is very high (in the order of 500 for a
medium sized power system at the transmission level), it is
not feasible to generate aset of operating points which is
densely distributed in the operating space and to analyze the
operating points with multiple contingency analysis off-line.
In order 1o overcome this “curse of dimensionality”,
unsupervised learning tackles the dimensionality problem
first based on two different approaches

) Subspace techniques
b) Quantization techniques.

The simplest subspace technique is the conventional
contingency ranking techniques. If for example the outage of
line ah is selected as the most important contingency, the
operating space of the linear model is projected to atwo-
dimensional subspace asillustrated in Fig. 15.

Pbe

Pbc max ~e
1 Pab I:l
Secure
D -
L — O critica
Pac Pabmax
Pac max |:| Insecure

Fig. 15 Limitation uf the number of contingencies.
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A Insecure

Secure

Pab

P

Pac max Pab max

o

Fig. 16 Reduction of the dimension of the operating vector.

] Critical

Conventiona load flow analysis examines the projection of
the base case onto this subspace. Supervised techniques are
also applied to construct the boundaries of the projected
reduced, security cube, see {El-Sharkawi et al., 1991].

Fig. 16 shows an more genera example of the reduction of
the operating space by a lower-dimensional manifold,
Depending on the projection used for reduction, the manifold
may be alinear or even orhtogonal subspace.

In[ Weerasooriya and El-Sharkawi, 1991] the principal

component analysis method (also called Karhunen-Lobe
expansion) is used to reduce the dimensionality of the
training vectors and construct the eigenspace corresponding to
the most significant components of the input vector. The
researchers implemented their approach ina conventional

algorithmic manner instead of using Oja's and Sanger's neural

net approach.The second class of unsupervised approaches
encountered in power system security assessment are
quantization techni ques. Fig. 17 shows an example of the
quantization of the operating space into classes of typical
states. Depending on the distance measure used for
classification, classes may be hyperboles, spheres or in the
case of the self-organizing feature map, of a more general
form because of the arrangement of neurons on a grid. The
classes usualy do not divide the cube crisply in secure and
insecure areas, but may contain critically high loaded as well
as dightly overloaded cases.

Pic
‘ Insecure
Pbc max
Secure Cert”’
»le F %}; ) Pab
1o 7o

Pac max A Pabmax

Pac Critical

Figure 17: Quantization of the operating space.

The two different clustering approaches discussed in section
7.3 have been applied to security assessment.



In the case of a small space station transmission system,
Sobajic et al. [1990] quantize the operating space into a
variable number of hyperspheres of fixed radius using an
unsupervised ART2-like ANN algorithm.

In{Niebur and Germond, 1991] Kohonen's self-organizing
feature map is used for the quantization of the operating
space, The maximal number of classes is given by the
number of neurons whose weight vector represents typical
operating states. The size of each class depends onthe density
of the probability distribution of the training vectors. The
operating space is represented on the two-dimensional feature
map by secure and insecure regions. This case will be
discussed in more detail in the following chapter.

7.4 Comparison of supervised and unsupervised learning

Although usually discussed on equal terms, there is an
important difference between supervised and unsupervised
learning. Unsupervised learning helps to organize complex
features into classes whereas supervised learning will then
calculate follow-up features for specific classes.

Unsupervised networks can therefore be viewed as a data pre-
processing step which reducesthe size of the data set before
learning the data's characteristics with supervised learning.
The Functional Link Net (FLLN) isoften used in combination
with the ART2 network [Sobajic and Pao, 1988]. Other
ANNSs combining an unsupervised and a supervised step are
the Counter-Propagation Network (CPN) [Hecht-Nielsen,
1988], and the Radial Basis Functions Net work (RBF)
[Moody and Darken, 1989]. The CPN combines a Kohonen
map layer with afeed forward layer. In the case of the RBF,
clustering can bc achieved by any unsupervised learning or
the k-means algorithm, and the neurons of the hidden layer
arc represented by these means. The architecture of the
supervised part is alinear feed-forward layer. In contrast to
the winucr-take all scheme in the. Kohonen network,
Gaussian activation functions stimulate several neurons at the
same time and the output of the network is a weighted sum
of these activations.

For Security assessment, the combination of an unsupervised
step for operat ing space reduction and a supervised step for
operating state classification has been applied by several
researchers including [Sobajic and Pao, 1990; El-Sharkawi e
al., 1991; Ranaweera and Karady, 1994]

Another example in power systems, where supervised and
unsupervised networks arc employed for data clustering and
estimation is the area of load forecasting [Hsu and Yang
199 1]. A Kohonen network separates the forecasting data into
representative classes like summer, winter, autumn and
spring and further into weekdays and holidays (see also
[Macabrey et al. 1991]. For each class of data a supervised
network is then used for load prediction for the classes data
points. For a similar purpose Ranaweera et al. [199S] apply
the RBF network in the area of load forecasting. Further
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detailed examples will be discussed in the other tutorial
chapters.

8. SUMMARY

We have presented an overview over different types of neural
units characterized by their input, output, weight vector, gain
function, architecture, processing and learning algorithm,

Tables|1-V give a short overview on the different characteris-
tics of neural networks and anon-exhaustive list of examples.

TAB LEII

Neural net parameters
Input vector x Number of neurons
Output vector y Gain function g(h)

Weight vector w Learning rate n(t)

TABLE 11
Architecture Examples
Layered Multi-layer perception
Fully connected Hopfield
Latera connections Kohonen

Radial Basis Functions net
Counter-Propagation net
Boltzmann machine

Hybrid networks

TABLE IV

Processing
(x, w_given, calculate y)

Examples

Feed-forward, Adaline

feed x once to get y Multi-layer perceptron
Kohonen

Recurrent, iterate x to get y Hopfield

Diagonally recurrent ANN

TABLE V
Training Examples
(x given, calculate w)
Supervised learning Deltarule
(y given) Back-propagation
Unsupervised learning | Principal Component Analysis
(no y given) Self -organization
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